OXID-NICHTOXID-TRANSFORMATIONEN

Werkzeug zum Eigenschaftsdesign von Keramikwerkstoffen

Partikel und Prozesstechnologie - Anwendungen

Hans-Peter Martin, Annegret Potthoff

© Fraunhofer

AGENDA

- Einführung Oxid/Nichtoxid-Transformationen
- Diatomenumwandlung in SiC
- Titansuboxidsynthese und Werkstoffherstellung
 - Ausgangsstoffe
 - Reduktion von Titandioxid
 - Werkstoffcharakterisierung
 - Werkstoffeigenschaften
 - Zusammenfassung

Reaktionsmechanismus bei der Oxid-Carbid-Transformation

L.M. Berger et al. Int. J. Refr. Met.& Hard Mat. 17 (1999), 235-243

S. Stolle et al. Int. J. Refr. Met.& Hard Mat. 18 (2000), 61-72

Mech. Eigenschaften von Titansuboxiden

Material	E-Modul (GPa)	σ _{4Bb} (MPa)	HV 0,5 (GPa)
Al ₂ O ₃ (A1999.7)	380	450	15,8
TiO ₂ (99,5%)	184	68	7,2-8,5
60Ti ₄ O ₇ -40Ti ₅ O ₉	221	110	10-11

Aus: M.Woydt, Mat.-Wiss. u. Werkstofftech. 2004, 35, No. 10/11

Änderung der Elektrische Leitfähigkeit bei Titanoxiden in Abhängigkeit zum Ti:O-Verhältnis

gezeichnet nach: P. Hayfield, Electrode Material, Electrode and Electrochemical Cell, EP 47595 A1 (1981)

Reaktionsmechanismus bei der Oxid-Carbid-Transformation

 $SiO_2 + CO \rightarrow SiO + CO_2$ $C + CO_2 \rightarrow CO$ $C + SiO_2 \rightarrow CO + SiO$ $2C + SiO \rightarrow SiC + CO$ SiO CO CO CO CO CO SiO CO С SiO₂ SiO₂ SiO₂ С

A.W. Weimer (ed.), Carbide, Nitride and Boride materials synthesis and processing, Chapman & Hall, London 1997

Oxidationsstabilität von Si-C-O Fasern (Nicalon) im Vergleich zu SiC-Fasern (HiNicalon)

- Ausgangsstoffe, Anwendungen
 - Diatomen (SiO₂)
 - Kohlenstoff (Stärkelösung)

- Anschwemmfiltration in der Lebensmittelindustrie
 - Physiologisch unbedenklich
 - Kostengünstig
 - Hohe Verfügbarkeit

Recyclingfähigkeit (Säure- und Basebeständigkeit) \Rightarrow SiC

Partikelcharakterisierung – chemische Verunreinigungen im Diatomen

Partikelcharakterisierung – Partikelgrößen

Diatomen	CBL	CBR	FN1	DIC
d ₁₀ (μm)	1,7	2,1	2,0	2,4
d ₅₀ (μm)	6,6	8,1	7,8	12,2
d ₉₀ (μm)	20,6	25,1	17,1	45,3
Spaz Obarflächa	6	2	40	
nach BET (m ² g ⁻¹)	O	5	40	Z

Partikelpräparation

- Suspensionsherstellung SiO₂ (Diatomen) + C (Stärke)
- Granulierung / Trocknung
- Synthese im Wirbelschichtofen

Gasstrom Pulvereinbringung Wirbelschichtsynthese Entspannung des Gases Zyklon Vorbehandlung / Pyrolyse: $(C_6H_{10}O_5)_n + x SiO_2 \rightarrow 6n C + xSiO_2 + 5nH_2O^{\uparrow}$ Gasstrom Reaktionszone Gasstrom Synthese: $3C + SiO_2 \rightarrow SiC + 2CO^{\uparrow}$ Aufwärmung Gasstromdes Gases antrieb Gaseinspeisung Gasstrom Pulverauffanggefäß

Eigenschaftsanpassung durch SiO₂-SiC Transformation

Ausgangsstoffe

TiO₂- Pulver P1 – Anastas + Rutil, P2 - Anastas (IoLiTec)

M. Nösel, Diplomarbeit 2009, TU Dresden, Institut für Werkstoffwissenschaft / ANW

Ausgangsstoffe

Fraunhofer

Mahlfortschritt an TiO₂-C-Pulvermischungen (0,74 m% C)

10 9 TiO1,60 – 4h Mahlung 8 7 TiO1,95 – 4h Mahlung 6 ∆Q₃(x) in % 5 TiO1,60 – 4h Mahlung + Temperung 1050°C 4 TiO1,95 – 4h Mahlung + Temperung 1050°C 3 2 1 0 0,1 10 0,01 1 100 1000 Partikelgröße in µm

Titandioxid-Reduktion / Pulveraufbereitung

Veränderung der Partikelgrößenverteilung durch Temperung

Verschiebung des Zeta-Potenzials von TiO₂-C-Pulvermischungen (0,74 m% C) nach der Temperung bei 1050°C

Werkstoffherstellung

Werkstoffcharakterisierung – Gefügeanalyse (SEM)

Überblick zu einem Titansuboxidgefüge, heißgepresst (1200°C, 2h)

Werkstoffcharakterisierung – Gefügeanalyse (SEM)

 $1\,\mu m$

Titansuboxidgefüge, heißgepresst (1200°C, 2h), mikro- und nanoskalige Strukturen

SE-Bilder

Inlens-Bilder

Werkstoffcharakterisierung – Elektrische Leitfähigkeit

Werkstoffcharakterisierung – Elektrische Leitfähigkeit

TiO_x in situ "dotiert"

Werkstoffcharakterisierung – Thermokraft (Seebeck-Koeffizient)

- 3. Titansuboxidsynthese und Werkstoffherstellung
- Eigenschaftsanpassung durch partielle TiO₂- Reduktion

 κ - thermische Leitfähigkeit, σ - elektrische Leitfähigkeit S – Seebeck-Koeffizient

4. Zusammenfassung

Diatomen

- Formstabilität + Oxid-Carbid-Transformation ⇒ Erhöhung der chemischen Stabilität und Beibehaltung der strukturellen Vorteile
- Titansuboxide
 - Partielle Reduktion Oxid Suboxid-Transformation ⇒ Balance von thermischer, elektrischer Leitfähigkeit und Seebeck-Koeffizient
- Weitere Oxid-Nichtoxid-Systeme
 - z.B. ZrO₂-ZrC Dampfdruck bei Hochvakuum / Hochtemperatur
 - **z**.B. B_2O_3 - B_4C überstöchiometrisches Borcarbid
 - **z**.B. SiC/Si3N4/BN \rightarrow SiCNB / amorphe Hochtemperaturphasen

Danksagung

- Dank für die finanzielle Unterstützung der Arbeiten in den Projekten:
 - BMBF, Fkz: 03N8016
 - FhG, Challenge-Förderprogramm
 - Sächsischen Aufbaubank im Rahmen der Exellenzinitiative "ECEMP" Fkz. 13932/2379 aus Mitteln des Europäischen Fonds für regionale Entwicklung und des Freistaates Sachsen
 - BMBF, Fkz: 03FPF00036 innerhalb des Forschungsprämienprogramms des BMBF
 - BMBF, Fkz: 03X3548G im Rahmen von ThermoPower
 - BMBF, Fkz: 03X3554G im Rahmen von ThermoPower

